Abstract

An improved set of island evolution equations is derived that incorporates the latest advances in MHD (magnetohydrodynamical) theory. These equations describe the resistive/viscous-MHD dynamics of a nonlinear magnetic island chain, embedded in a toroidal pinch plasma, in the presence of a programmable, externally applied, resonant magnetic perturbation. A number of interesting example calculations are performed using the new equations. In particular, an investigation is made of a recently discovered class of multiharmonic resonant magnetic perturbations that have the novel property that they can lock resonant island chains in a stabilizing phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.