Abstract

This paper investigates an improved event-triggered robust adaptive control algorithm for the marine surface vehicle with the fault compensating mechanism. A dynamic event-triggered mechanism is designed with a concise form to reduce the updating frequencies of the system state. Different from the exiting results, the proposed algorithm can ensure that both the controller and the state transmitter are activated synchronously only at the triggering instants. That can ameliorate the communication obstruction in both the channels of sensor-to-controller and controller-to-actuator. To improve the fault-tolerant capability of the theoretical algorithm, gain-related adaptive parameters are derived to compensate for gain uncertainties and possible actuator faults. In addition, a compensating term via the robust neural damping technique is introduced to stabilize the unpredictable perturbation from the model uncertainties and the external disturbance. Through the Lyapunov criterion, the corresponding closed-loop system is with the semi-global uniformly ultimately bounded (SGUUB) stability. The simulation results are illustrated to verify the effectiveness of the algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call