Abstract

A method to improve accuracy of surface compliance determination by atomic force microscopy is presented, based on using calibrated cantilevers as the reference samples. During each work session, a 1-D compliance map of a reference cantilever is calculated from force–indentation curves along its axis, by the standard ‘indentation mode’. An independent measurement of local compliance on the reference cantilever is obtained by 2-D imaging in constant deflection and using analytical equations based on its known geometry and material properties, called ‘imaging mode’. A re-mapping of the apparent (‘indentation mode’) to the true (‘imaging mode’) compliance is thus obtained, which is applied on ‘indentation mode’ measurements of an unknown sample. This method demonstrates correction in the right direction for a polystyrene plate and a Teflon foil reference samples. The method is then applied on an unknown sample of flat agarose gel patterned with spots of polylysine protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.