Abstract
In this paper, we define two restricted estimators for the regression parameters in a multiple linear regression model with measurement errors when prior information for the parameters is available. We then construct two sets of improved estimators which include the preliminary test estimator, the Stein-type estimator and the positive rule Stein type estimator for both slope and intercept, and examine their statistical properties such as the asymptotic distributional quadratic biases and the asymptotic distributional quadratic risks. We remove the distribution assumption on the error term, which was generally imposed in the literature, but provide a more general investigation of comparison of the quadratic risks for these estimators. Simulation studies illustrate the finite-sample performance of the proposed estimators, which are then used to analyze a dataset from the Nurses Health Study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.