Abstract

AbstractGroundwater storage anomaly (GWSA) can be estimated either at the large scale from the Gravity Recovery and Climate Experiment (GRACE) or at the local scale based on in situ observed groundwater level (GWL) and aquifer storage parameters. Yet, the accuracy of GRACE‐based estimate is affected by leakage errors, while that of local GWL‐based estimate requires the reliable specific yield (Sy) data that are usually not available. Here, we developed a novel approach, the coordinated forward modeling (CoFM), based on the iterative forward modeling to improve GWSA estimation at the sub‐regional scale smaller than the typical GRACE footprint. It is achieved by solving Sy through iterative comparisons between GRACE‐based and observation‐based GWSA at 0.5° grid scale, and then re‐calculating GWSA using the updated Sy and observed GWL. The utility of CoFM is explored by using the hypothetical experiments and a real case study in the Piedmont Plain (PP, ∼54,000 km2) and East‐central Plain (ECP, ∼86,000 km2) of North China Plain. Results show that CoFM can detect GWSA at 0.5° grid scale in the hypothetical experiments given the large spatial variability of GWL. While in the real case study, the CoFM distinguishes between the divergent unconfined GWSA trends (2005–2016) in PP (−41.80 ± 0.55 mm/yr) and ECP (−7.57 ± 0.60 mm/yr) caused by the differences in hydrogeological conditions and groundwater use. The improvement made by CoFM can be attributed to the use of the distributed GWL information to constrain GRACE leakage errors. This study highlights a practical important solution for improving sub‐regional GWSA estimation through the joint use of large‐scale GRACE data and local‐scale well observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.