Abstract

Sodium-glucose cotransporter 2 (SGLT-2) inhibitors are antidiabetic drugs that improve cardiovascular outcomes. Hemoglobin and hematocrit values increase after SGLT-2 inhibitor administration. Although these factors increase blood viscosity and the risk of cardiovascular disease, SGLT-2 inhibitors have protective effects on the cardiovascular system. The mechanisms for this paradoxical phenomenon remain unclear, and the effect of SGLT-2 inhibitors on hemorheology has not been studied. We evaluated the hemorheological parameters of 63 patients of whom 38 received metformin with a dipeptidyl peptidase 4 (DPP-4) inhibitor, while 25 received metformin with SGLT-2 inhibitor. Blood viscosity was measured using a cone-and-plate viscometer, erythrocyte aggregation was measured using a modified erythrocyte sedimentation rate method, and erythrocyte membrane fluctuation was measured as deformability, using a diffraction optical tomography. Both blood viscosity and erythrocyte aggregation increased in the SGLT-2 inhibitor group, although erythrocyte deformability was significantly improved compared with that of the DPP-4 inhibitor group (DPP-4 inhibitor 43.71 ± 5.13nm; SGLT-2 inhibitor 53.88 ± 4.88nm; p < 0.001). When the two groups were compared after propensity score matching, no differences in blood viscosity at high shear rates and erythrocyte aggregation were observed, although erythrocyte deformability was significantly improved in the SGLT-2 inhibitor group (DPP-4 inhibitor 45.01 ± 5.28nm; SGLT-2 inhibitor 53.14 ± 4.72nm; p = 0.001). This study demonstrates that erythrocyte deformability was improved in the SGLT-2 inhibitor group compared with that in the DPP-4 inhibitor group. This improvement in erythrocyte deformability is expected to have a protective effect on the cardiovascular system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call