Abstract
Ceramics based on calcium and sodium cobaltates are promising high-temperature thermoelectric oxide materials with complementary advantages. Ca3Co4O9 is stable at high temperatures, whereas Na0.75CoO2 can be easily processed as a textured ceramic with excellent thermoelectric properties. Na0.75CoO2, however, lacks long-term stability and degrades in even a relatively mild humid environment. In this work, we present a novel approach to the synthesis of complex composite materials based on intergrowths of sodium and calcium cobaltates that have excellent thermoelectric performance and improved stability. We synthesized samples with the mixed composition (3-x)Ca3Co4O9–4x(Na0.75CoO2) in an over-pressured oxygen atmosphere. Samples with the mixed Ca–Na composition developed textured microstructures composed of intergrowths of both end-members, as revealed by transmission electron microscopy. We also examined the thermoelectric performance of the investigated materials after exposure to high humidity and found that the composition with x = 0.8 (Ca:Na = 2.75) has long-term stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.