Abstract

Energy Valley Optimizer (EVO) is one of the recent metaheuristic algorithms. It draws inspiration from advanced principles in physics related to particle stability and decay modes. This paper presents a new Energy Valley Optimizer (EVO) and levy flights that are hybrid to improve the EVO in solving optimization problems. Levy flight is one of the most important randomization techniques. Fifteen mathematical test functions (five unimodal functions, four multimodal functions, and six composite functions) are solved with the proposed algorithm. We also compare our results with previous results of metaheuristic algorithms. The statistical results show that the results of the Levy Energy Valley Optimizer (LEVO) outperform other algorithms in almost all mathematical test functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.