Abstract
Modelling the performance of building stocks is crucial in facilitating the renovation at the building stock level. Bottom-up building stock modelling begins by detailing individual buildings and then aggregates them into stock level. Its primary advantage lies in capturing the inherent heterogeneity among distinct buildings, which enables tailored retrofitting. Naturally, this approach requires a comprehensive dataset with detailed building information such as geometry and envelope thermal properties. However, a common challenge is the incompleteness of available data in individual datasets. To address this, previous bottom-up studies have filled the missing data with representative or statistical data. Such practice could lead to homogeneous modelling of distinctbuildings within the same statistical group. This limits the utilization of key ability of bottom-up building stock modelling in capturing heterogeneity, such as tailored retrofitting to explore potential retrofitting areas and strategies.To address this challenge of homogeneous modelling, we utilize data fusion framework for bottom-up building stock modelling, employing probabilistic record linkage and inverse modelling techniques to integrate multiple incomplete building performance datasets. This framework fills the missing data in one dataset with information from another, thus capturing inherent heterogeneity in the building stock. An empirical study was conducted in Umeå, Sweden, to investigate the framework’s effectiveness by modelling building stock with various retrofitting strategies. This study contribution lies in enhancing bottom-up building stock modelling by capturing inherent heterogeneity, to provide tailored retrofitting solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.