Abstract

BackgroundMicrobial electricity production has received considerable attention from researchers due to its environmental friendliness and low price. The increase in the number of intracellular electrons in a microbial fuel cell (MFC) helps to improve the MFC performance.ResultsIn this study, we accumulated excess electrons intracellularly by knocking out the gene related to intracellular electron consumption in Saccharomyces cerevisiae, and the elevated intracellular electron pool positively influenced the performances of MFCs in terms of electricity production, while helping to increase ethanol production and achieve ethanol and electricity co-production, which in turn improved the utilization of substrates. The final knockout strain reached a maximum ethanol yield of 7.71 g/L and a maximum power density of 240 mW/m2 in the MFC, which was 12 times higher than that of the control bacteria, with a 17.3% increase in energy utilization.ConclusionsThe knockdown of intracellular electron-consuming genes reported here allowed the accumulation of excess electrons in cells, and the elevated intracellular electron pool positively influenced the electrical production performance of the MFC. Furthermore, by knocking out the intracellular metabolic pathway, the yield of ethanol could be increased, and co-production of ethanol and electricity could be achieved. Thus, the MFC improved the utilization of the substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call