Abstract
Fungal species associated with ericaceous plant roots produce a number of enzymes and other bio-active metabolites in order to enhance survival of their host plants in natural environments. This study focussed on endoglucanase production from root associated ericoid mycorrhizal and dark septate endophytic fungal isolates. Out of the five fungal isolates screened, Leohumicola sp. (ChemRU330/PPRI 13195) had the highest relative enzyme activity and was tested along with isolates belonging to Hyloscyphaceae (EdRU083/PPRI 17284) and Leotiomycetes (EdRU002/PPRI 17261) for endoglucanase production under different pH and nutritional conditions that included: carbon sources, nitrogen sources and metal ions, at an optimum temperature of 28 °C. An optimal of pH 5.0 produced enzyme activity of 3.99, 2.18 and 4.31 (U/mg protein) for isolates EdRU083, EdRU002 and Leohumicola sp. respectively. Increased enzyme activities and improved mycelial biomass production were obtained in the presence of supplements such as potassium, sodium, glucose, maltose, cellobiose, tryptone and peptone. While NaFe-EDTA and Co2+ inhibited enzyme activity. The potential role of these fungi as a source of novel enzymes is an ongoing objective of this study.
Highlights
The soils of temperate, boreal forests and heathlands are characteristically enriched with a large number of soil microbes that include ericoid mycorrhizal (ERM) and dark septate root endophytic (DSE) fungi
Ericoid mycorrhizas are characterized by densely packed intracellular fungal coils that are formed in the epidermal cells of the fine hair roots of their host plant while establishing a loose hyphal network outside of the hair roots (Smith and Read 2008)
Maximum enzyme activity and biomass yield were obtained between pH 4.0–6.0 (Fig. 1) except for Leohumicola sp. that showed a significant decrease in activity at pH 6.0
Summary
The soils of temperate, boreal forests and heathlands are characteristically enriched with a large number of soil microbes that include ericoid mycorrhizal (ERM) and dark septate root endophytic (DSE) fungi. Roots of ericaceous plants harbour these fungi, conferring eco-physiological benefits to the host (Bizabani and Dames 2015). Ericoid mycorrhizas are characterized by densely packed intracellular fungal coils that are formed in the epidermal cells of the fine hair roots of their host plant while establishing a loose hyphal network outside of the hair roots (Smith and Read 2008). These thin hyphal coils within the cortical cells serve as interfaces for nutrient exchange between the symbionts (Vohnik et al 2009). The primary function of the ERM fungus is to facilitate the utilisation of organic complexes as a source of nutrients for their host plant and in return, Enzymes of microbial origin have high biotechnological importance in the processing of food, manufacturing
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.