Abstract

Functional konjac glucomannan (KGM) was used to structure the water phase of O/W emulsions containing a lipophilic bioactive compound (β-carotene). KGM greatly increased the viscosity of the water phase and thus the viscosity of final emulsions. Results of Fourier-transform infrared spectroscopy (FT-IR) showed that there is no significant non-covalent interaction between KGM and whey proteins in the water phase. KGM significantly improved the creaming and pH stability of whey-protein-stabilized emulsions (p < 0.05), and significantly decreased the oiling-off of emulsions during freeze-thaw test. Emulsions with or without KGM all had good thermal stability at 80 °C. Microscopy observations indicated obvious aggregation of free proteins and oil droplets in gastric phase and an enzymatic-induced break-down of droplets, mainly in the intestinal phase of the simulated gastrointestinal tract (GIT) digestion. Emulsions with KGM-structured water phase showed a lower final release rate of encapsulated β-carotene than emulsion without KGM (p < 0.05), and the release rate decreased with the increasing KGM content. The findings of this study contribute to a better understanding of the influence of the water phase on the release of encapsulated compounds from emulsions, and make it possible to achieve controlled release of encapsulated compounds, and/or to deliver multiple health-beneficial nutrients at once by structuring emulsion-based carriers with functional natural biopolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.