Abstract

Karhunen–Loève (KL) decomposition is a popular approach for determining the principal spatial structures from the measured data. Empirical eigenfunctions (EEFs) can generally generate a relatively low-dimensional model among all linear expansions. The current study proposes improved EEFs for model reduction of the nonlinear distributed parameter systems (DPSs) by the basis function transformation from initial EEFs. The basis function transformation matrix is obtained using the balanced truncation method. This performance is proved theoretically. The numerical simulations for the rescaled Kuramoto–Sivashinsky equations show that using the improved EEFs has an evidently better performance than using the same number of the initial EEFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.