Abstract

The quantum efficiency of GaN-based micro-light-emitting diodes (micro-LEDs) is of great significance for their luminescence and detection applications. Optimized passivation process can alleviate the trapping of carriers by sidewall defects, such as dangling bonds, and is regarded as an effective way to improve the quantum efficiency of micro-LEDs. In this work, an AlN passivation layer was prepared by atomic layer deposition to improve the electro-optical and photoelectric conversion efficiency in GaN-based micro-LEDs. Compared to conventional Al2O3 passivation, the AlN passivation process has a stronger ability to eliminate the sidewall defects of micro-LEDs due to the homogeneous passivation interface. Our experiments show that the AlN-passivated device exhibits two orders of magnitude lower forward leakage and a smaller ideality factor, which leads to significantly enhanced external quantum efficiency (EQE). For 25*25 μm2 micro-LEDs, the EQE of the AlN-passivated device was 18.3% and 57.7% higher than that of the Al2O3-passivated device in luminescence application and detection application, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.