Abstract

Zero-valent iron (ZVI) is widely used for groundwater remediation, but suffers from high electron consumption because of its free contact with non-target substrates such as O2. Here, ZVI-ALOX particles were prepared via in situ NaBH4 aqueous-phase reduction of ferrous ions (Fe2+) preabsorbed into Al2O3 microspheres. The electron efficiency (EE) and long-term performance of the material were improved by sequestering ZVI in the interspace of the Al2O3 microspheres (ZVI-ALOX). During long-term (350 days) continuous flow, Cr(VI) was removed to below the detection limit for over 23 days. Based on the high reactivity of ZVI towards Cr(VI), the EE of ZVI-ALOX was evaluated by measuring its Cr(VI) removal efficiency at neutral pH and comparing it with that of ZVI. The results showed that the EE of ZVI-ALOX during long-term continuous flow could reach 39.1%, which was much higher than that of ZVI (8.68%). The long-term continuous flow results also demonstrated that treatment of the influent solution achieved higher EE values than in the batch mode, where the presence of dissolved oxygen reduced EE values. At lower pollutant concentrations, the sequestering of ZVI was beneficial to its performance and long-term utility. In addition, measurement of the acute toxicity of treated column effluent using the indicator organism Photobacterium phosphoreum T3 showed that ZVI-ALOX could reduce the toxicity of 5 mg/L Cr(VI) solution by ~70% in 350 d. The results from this study provide a basis for the development of permeable reactive barriers for groundwater remediation based on sequestered ZVI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call