Abstract
The covariance matrix adaptation evolutionary strategy (CMA-ES) is explored here as an improved alternative to well-established algorithms used in electromagnetic (EM) optimization. In the past, methods such as the genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE) have commonly been used for EM design. In this article, we examine and compare the performance of CMA-ES, PSO, and DE when applied to test functions and several challenging EM design problems. Of particular interest is demonstrating the ability of the relatively new CMA-ES to more quickly and more reliably find acceptable solutions compared with those of the more classical optimization strategies. In addition, it will be shown that due to its self-adaptive scheme, CMA-ES is a more user-friendly algorithm that requires less knowledge of the problem for preoptimization configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.