Abstract
Electrolyte solutions of magnesium organo-halo-aluminates in ethers are suitable for rechargeable magnesium batteries as they enable highly reversible electrodeposition for magnesium while they possess a wide electrochemical window (>2.2 V). Adding LiCI or tetrabutylammonium chloride to these solutions considerably improves their ionic conductivity, the kinetics of the Mg deposition-dissolution processes, and the intercalation behavior of Mg x MO 6 S 8 Chevrel cathodes. The dissolution of both salts in the electrolytic solutions involves acid-base reactions with complex species. Multinuclei nuclear magnetic resonance and Raman spectroscopy were used in conjunction with electrochemical techniques to study these systems. The nature of these reactions, their products, and the way they influence the various properties of these solutions, are discussed herein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.