Abstract

Alternating current thin film electroluminescent devices have been fabricated using sputter-deposited ZnS:Mn with and without codoped potassium chloride via both in situ and ex situ methods. In situ codoping proved to be difficult due to a memory effect in the deposition chamber. Samples codoped with potassium chloride via an ex situ diffusion method exhibited improvements in brightness of up to 70% (572 vs 337 cd/m2) and efficiency of up to 60% (1.95 vs 1.25 lm/W) over noncodoped samples. The threshold voltage increased by ≈5% (160 vs 168 V), and the brightness-versus-voltage curve stabilized more rapidly for the devices. Several possible mechanisms to explain these effects are discussed. While modest microstructural changes contribute to the improvements, changes in point defects which lead to modification of the space charge in the devices appears to be the dominant mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.