Abstract

Multi-walled carbon nanotube (MWCNT) incorporated biodegradable gelatin nanocomposites (Gel/MWCNT) have been prepared following a facile solution processing method. The Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electronic microscopy (FESEM), and water contact angle (WCA) measurements revealed improved structural properties and surface morphological features of the nanocomposite films due to the incorporation of MWCNT. A four-fold decrease in the DC resistivity was obtained due to the addition of MWCNTs. The specific capacitance of the nanocomposite increased from 0.12 F/g to 12.7 F/g at a current density of 0.3 μA/cm2 due to the incorporation of 0.05 wt.% MWCNT. EIS analysis and the corresponding Nyquist plots demonstrated the contributions of the different electrical components responsible for the improved electrochemical performance were evaluated using an equivalent AC circuit. The incorporation of MWCNTs was found to reduce the charge-transfer resistance from 127 Ω to 75 Ω and increase the double-layer capacitance from 4 nF to 9 nF. The Gel/MWCNT nanocomposite demonstrated improved cyclic stability with a retention of 95% of the initial capacitance even after 5000 charging/discharging cycles. The biodegradability test showed that the nanocomposite degraded completely after 30 hours of immersion in water. This fully biocompatible nature of the nanocomposites with high specific capacitance and low charge transfer resistance may offer a promising route to fabricate a nature-friendly electrode material for energy storage applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.