Abstract

The formation of biofilm involves cell aggregation and adherence, enveloped by a self-produced extracellular matrix. In the medical domain, biofilm-associated infections pose significant challenges, especially concerning implants. This investigation focuses on enhancing electromediated bacterial biofilm eradication through polymer coatings on the anode. These coatings catalyze reactive oxygen species (ROS) generation or convert hydrophobic coatings to bactericidal hydrophilic polycations, detaching the biofilms that are predominantly polyanionic. The first approach employs a metallized polytetrathienylporphyrin layer with ROS catalytic capability, while the second involves an insoluble hydrophobic polyamide, which, upon oxidation, transforms into a bactericidal hydrolytically degradable polycation. Both approaches show promising efficacy in augmenting electromediated Staphylococcus aureus biofilm destruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call