Abstract
AbstractEpitaxial Cd2SnO4 films were fabricated on MgO(00l) single crystalline substrates by pulsed laser deposition technique at various substrate temperatures and growth oxygen pressures. The microstructure, transport, and optical properties of the films were studied in detail. High‐resolution X‐ray diffraction and high‐resolution transmission electron microscopy results demonstrate that all the Cd2SnO4 films are grown epitaxially on MgO(00l) substrates. Atomic force microscope images indicate that the films have smooth surface morphologies. Hall‐effect measurements reveal that the epitaxial film grown at 680°C and 40 Pa presents the minimum resistivity value of 0.61 mΩcm and maximal Hall mobility of 32.87 cm2 V−1 s−1. The metal–semiconductor transitions of Cd2SnO4 films were observed and explained by competitive effects of two conductive mechanisms. The optical transmittance of the Cd2SnO4 films is higher than 75% in the visible and near‐infrared range, and the optical bandgap was determined to be about 3.09 eV for the film grown at optimal condition. The band structure and density of states of the Cd2SnO4 were calculated by the density functional theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.