Abstract

Recently, the progress of electronic devices toward miniaturization has strongly promoted development of multifunctional materials possessing multiple desirable properties. In this study, we develop and fabricate 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr multifunctional ceramics which show simultaneously considerable electric-field-induced strain and bright green light emission properties. With the introduction of Er3+, the ceramics gradually transform from non-ergodic relaxor phase to ergodic relaxor phase which could reversibly transform to ferroelectric phase under the electric field. As a result, with improving Er3+ content, the shape of the polarization-electric field loops of the ceramics become pinched, and it is obvious that the negative strain disappears while the positive strain gradually increases and reaches a maximum value 0.46% at x = 1.2 mol%. Besides, After the ceramics are poled, the light emission peak are greatly enhanced attributed to the decreased crystal symmetry and increased domain size, and is the strongest at x = 1.2 mol%. These results indicate that 0.93Bi0.5Na0.5TiO3-0.07BaTiO3-xEr ceramics are good candidates for developing multifunctional optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call