Abstract

An ultrathin hole-injection buffer layer (HBL) using silicon dioxide (SiO2) by electron beam evaporation in flexible organic light-emitting diode (FOLED) has been fabricated. While the current of the device at constant driving voltage decreases as increasing SiO2thickness. Compared to the different thicknesses of the buffer layer, the FOLED with the buffer layer of 4 nm showed the highest luminous efficiency. The atomic force microscopy (AFM) investigation of indium tin oxide (ITO)/SiO2topography reveals changes at the interface between SiO2and N,N′-bis-(1-naphthl)-diphenyl-1,1′-bipheny-4,4′-diamine (NPB), resulting in ultrathin SiO2layers being a clear advantage for a FOLED. However, the SiO2can be expected to be a good buffer layer material and thus enhance the emission performance of the FOLED.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.