Abstract

Soil salinization seriously affects crop yield and soil productivity. The application of bacteria and microalgae has been considered as a promising strategy to alleviate soil salinization. However, the effect of bacteria-microalgae symbiosis on saline-alkali land is still unclear. This study evaluated the effects of Azotobacter beijerinckii, Chlorella pyrenoidosa, and their combined application on the wheat growth and saline-alkali soil improvement. The results showed that, among all the treatments, A. beijerinckii + live C. pyrenoidosa combined inoculation group (BA) had the best effect on increasing wheat plant biomass, improving salt tolerance, and improving soil fertility. The dry weight of wheat plant in the BA group increased by 66.7%, 17.4%, and 35.0%, respectively, compared with the control group (CK), A. beijerinckii inoculation group (B), and live C. pyrenoidosa inoculation group (A). The total nitrogen content of wheat plant in the BA group increased by 69.5%, 76.7%, and 71.1%, compared with the CK, B, and A group. The proline content of wheat plant in the BA group was 100% higher than that in the CK group. The N/P ratio and K/Na ratio of wheat plant increased by 157% and 12.9% in the BA group compared with the CK group, respectively, which was more conducive to alleviating nitrogen limitation and salt stress. The A. beijerinckii + live C. pyrenoidosa inoculation treatment better reduced soil pH and improved the availability of phosphorus in soil. This study illustrated the comprehensive application prospects of bacteria-microalgae interactions on wheat growth promotion and soil improvement in saline-alkali land, and provided a new effective strategy for improving saline-alkali soil quality and increasing crop productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.