Abstract
We present a refined duality estimate for parabolic equations. This estimate entails new results for systems of reaction-diffusion equations, including smoothness and exponential convergence towards equilibrium for equations with quadratic right-hand sides in two dimensions. For general systems in any space dimension, we obtain smooth solutions of reaction-diffusion systems coming out of reversible chemistry under an assumption that the diffusion coefficients are sufficiently close one to another.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.