Abstract

Catchment-scale efficient agricultural drought monitoring and irrigation planning mostly depend on the accuracy of evapotranspiration (ET) estimates under different crop-growth phases. As indirect ET estimation under limited data availability scenario and complex paddy-field dynamics could not be sufficiently addressed by the conventional curve number (CN) based SWAT model, SWAT incorporates an add-in pothole module (SWAT-P) that conceptualizes the paddy-field hydrology with the empirical coefficient or equations resulting in poor ET estimates. To address these limitations, this study integrates an improved pothole methodology in SWAT (SWAT-EP) accounting the vadose-zone soil water dynamics under alternate ponding and drying conditions, ET variation under moisture abundant and stress conditions, and role of irrigation return flow generated in the paddy fields. The proposed approach was validated in the Kangsabati River integrated reservoir-catchment-command (12,014.70 km2) of the eastern India, and the results reveal that SWAT-EP outperformed the existing SWAT-P in reproducing the catchment-scale streamflow and ET flux with respect to the FAO-56 Penman-Monteith (PM) based ET estimates in all the four cropping seasons. The SWAT-EP derived Standardized Evapotranspiration Drought Index (SEDI) based drought severity and duration well-corroborate with the benchmark MOD16A2 derived drought estimates; whereas, the SWAT-P tends to overestimate the drought severity in the command area. The predictive uncertainty in drought monitoring was the lowest by SWAT-EP with relatively lower uncertainty was observed in the crop-growing locations of Kharagpur and Mohanpur. Moreover, the teleconnection between drought and climatic escalations corresponds to a better reproducibility of El Niño and La Niña phases by the SWAT-EP, while the SWAT-P performed un-satisfactorily across different spatiotemporal domains. This study endorses to adopt the proposed SWAT-EP model for river basin-scale drought monitoring and irrigation planning with prior validation in the diversified climatic and topographic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.