Abstract

We propose a drone classification method for polarimetric radar, based on convolutional neural network (CNN) and image processing methods. The proposed method improves drone classification accuracy when the micro-Doppler signature is very weak by the aspect angle. To utilize received polarimetric signal, we propose a novel image structure for three-channel image classification CNN. To reduce the size of data from four different polarization while securing high classification accuracy, an image processing method and structure are introduced. The data set is prepared for a three type of drone, with a polarimetric Ku-band frequency modulated continuous wave (FMCW) radar system. Proposed method is tested and verified in an anechoic chamber environment for fast evaluation. A famous CNN structure, GoogLeNet, is used to evaluate the effect of the proposed radar preprocessing. The result showed that the proposed method improved the accuracy from 89.9% to 99.8%, compared with single polarized micro-Doppler image. We compared the result from the proposed method with conventional polarimetric radar image structure and achieved similar accuracy while having half of full polarimetric data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.