Abstract

Things receive digital intelligence by being connected to the Internet and by adding sensors. With the use of real-time data and this intelligence, things may communicate with one another autonomously. The environment surrounding us will become more intelligent and reactive, merging the digital and physical worlds thanks to the Internet of things (IoT). In this paper, an optimal methodology has been proposed for distinguishing outlier sensors of the Internet of things based on a developed design of a dragonfly optimization technique. Here, a modified structure of the dragonfly optimization algorithm is utilized for optimal area coverage and energy consumption reduction. This paper uses four parameters to evaluate its efficiency: the minimum number of nodes in the coverage area, the lifetime of the network, including the time interval from the start of the first node to the shutdown time of the first node, and the network power. The results of the suggested method are compared with those of some other published methods. The results show that by increasing the number of steps, the energy of the live nodes will eventually run out and turn off. In the LEACH method, after 350 steps, the RED-LEACH method, after 750 steps, and the GSA-based method, after 915 steps, the nodes start shutting down, which occurs after 1227 steps for the proposed method. This means that the nodes are turned off later. Simulations indicate that the suggested method achieves better results than the other examined techniques according to the provided performance parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.