Abstract
In recent years, e-sports has rapidly developed, and the industry has produced large amounts of data with specifications, and these data are easily to be obtained. Due to the above characteristics, data mining and deep learning methods can be used to guide players and develop appropriate strategies to win games. As one of the world's most famous e-sports events, Dota2 has a large audience base and a good game system. A victory in a game is often associated with a hero's match, and players are often unable to pick the best lineup to compete. To solve this problem, in this paper, we present an improved bidirectional Long Short-Term Memory (LSTM) neural network model for Dota2 lineup recommendations. The model uses the Continuous Bag Of Words (CBOW) model in the Word2vec model to generate hero vectors. The CBOW model can predict the context of a word in a sentence. Accordingly, a word is transformed into a hero, a sentence into a lineup, and a word vector into a hero vector, the model applied in this article recommends the last hero according to the first four heroes selected first, thereby solving a series of recommendation problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.