Abstract
(+)-Discodermolide is a microtubule-stabilizing agent with potential for the treatment of taxol-refractory malignancies. (+)-Discodermolide congeners containing the C-3'-phenyl side chain of taxol (paclitaxel) were synthesized based on computational docking models predicting this moiety would fill an aromatic pocket of β-tubulin insufficiently occupied by (+)-discodermolide, thereby conferring improved ligand-target interaction. It was recently demonstrated, however, that the C-3'-phenyl side chain occupied a different space, instead extending toward the M-loop of β-tubulin, where it induced a helical conformation, hypothesized to improve lateral contacts between adjacent microtubule protofilaments. This insight led us to evaluate the biological activity of hybrid congeners using a panel of genetically diverse cancer cell lines. Hybrid molecules retained the same tubulin-polymerizing profile as (+)-discodermolide. Since (+)-discodermolide is a potent inducer of accelerated senescence, a fate that contributes to drug resistance, congeners were also screened for senescence induction. Flow cytometric and transcriptional analysis revealed that the hybrids largely retained the senescence-inducing properties of (+)-discodermolide. In taxol-sensitive cell models, the congeners had improved dose-response parameters relative to (+)-discodermolide and, in some cases, were superior to taxol. However, in cells susceptible to senescence, EMax increased without concomitant improvements in EC50 such that overall dose-response profiles resembled that of (+)-discodermolide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.