Abstract
An all-small-molecule ternary solar cell is achieved with a power conversion efficiency of 10.48% by incorporating phenyl-C71 -butyric-acid-methyl ester (PC71 BM) into a nonfullerene binary system. The addition of PC71 BM is found to modulate the film morphology by improving the domain purity and decreasing the domain size. This modulation facilitates charge generation and suppresses charge recombination, as manifested by the significantly enhanced short-circuit current density and fill factor. The results correlate the domain characteristics with the device performance and offer new insight from the perspective of morphology modulation for constructing efficient ternary devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.