Abstract

A novel distributed particle filter algorithm is presented, called drift homotopy likelihood bridging particle filter (DHLB-PF). The DHLB-PF is designed to surmount the degeneracy problem by employing a multilevel Markov chain Monte Carlo (MCMC) procedure after the resampling step of particle filtering. DHLB-PF considers a sequence of pertinent stationary distributions which facilitates the MCMC step as well as explores the state space with a higher degree of freedom. The proposed algorithm is tested in a multi-target tracking problem using a wireless sensor network where no fusion center is required for data processing. The observations are gathered only from the informative sensors, which are sensing useful observations of the nearby moving targets. The detection of those informative sensors, which are typically a small portion of the sensor network, is taking place by using a sparsity-aware matrix decomposition technique. Simulation results showcase that the DHLB-PF outperforms current popular tracking algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.