Abstract

In response to the multitarget tracking problem of distributed sensors with a limited detection range, a distributed sensor measurement complementary Gaussian component correlation GCI fusion tracking method is proposed on the basis of the probabilistic hypothesis density filtering tracking theory. First, the sensor sensing range is extended by complementing the measurements. In this case, the multitarget density product is used to classify whether the measurements belong to the intersection region of the detection range. The local intersection region is complemented only once to reduce the computational cost. Secondly, each sensor runs a probabilistic hypothesis density filter separately and floods the filtering posterior with the neighboring sensors so that each sensor obtains the posterior information of the neighboring sensors. Subsequently, Gaussian components are correlated by distance division, and Gaussian components corresponding to the same target are correlated into the same subset. GCI fusion is performed on each correlated subset to complete the fusion state estimation. Simulation experiments show that the proposed method can effectively perform multitarget tracking in a distributed sensor network with a limited sensing range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call