Abstract
Many pattern recognition applications involve the treatment of high-dimensional data and the small sample size problem. Principal component analysis (PCA) is a common used dimension reduction technique. Linear discriminate analysis (LDA) is often employed for classification. PCA plus LDA is a famous framework for discriminant analysis in high-dimensional space and singular cases. In this paper, we examine the theory of this framework and find out that even if there is no small sample size problem the PCA dimension reduction cannot guarantee the subsequent successful application of LDA. We thus develop an improved discriminate analysis method by introducing an inverse Fisher criterion and adding a constrain in PCA procedure so that the singularity phenomenon will not occur. Experiment results on face recognition suggest that this new approach works well and can be applied even when the number of training samples is one per class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.