Abstract
A simple model for two-dimensional photonic crystal devices consists of a finite number of possibly different circular cylinders centered on lattice points of a square or triangular lattice and surrounded by a homogeneous or layered background medium. The Dirichlet-to-Neumann (DtN) map method is a special method for analyzing the scattering of an incident wave by such a structure. It is more efficient than existing numerical or semianalytic methods, such as the finite element method and the multipole method, since it takes advantage of the underlying lattice structure and the simple geometry of the unit cells. The DtN map of a unit cell is a relation between a wave field component and its normal derivative on the cell boundary, and it can be used to avoid further computation inside the unit cell. In this paper, an improved DtN map method is developed by constructing special DtN maps for boundary and corner unit cells using the method of fictitious sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.