Abstract
We studied the direct electron transfer (DET) of proteins on a carbon nanofiber (CNF) modified carbon film electrode by employing the one-step UV/ozone treatment of CNF. This treatment changed the CNF surface from hydrophobic to hydrophilic because a sufficient quantity of oxygen functional groups was introduced onto the CNF surface. Furthermore, this simple approach increased both the effective surface area and the number of edge-plane defect sites. As a result, the reversibility of redox species, such as ferrocyanide and dopamine, was greatly improved on the treated electrode surface. We obtained on efficient DET of bilirubin oxidase (BOD) and cytochrome c (cyt c) at the treated CNF electrode, which exhibited 38 (for BOD) and 6 (for cyt c) times higher than that at untreated CNF modified electrode. These results indicate that the combination of nanostructured carbon and this UV/ozone treatment process can efficiently create a functionalized surface for the electron transfer of proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.