Abstract
We propose a modification, based on the RESTART (repetitive simulation trials after reaching thresholds) and DPR (dynamics probability redistribution) rare event simulation algorithms, of the standard diffusion Monte Carlo (DMC) algorithm. The new algorithm has a lower variance per workload, regardless of the regime considered. In particular, it makes it feasible to use DMC in situations where the “naïve” generalization of the standard algorithm would be impractical due to an exponential explosion of its variance. We numerically demonstrate the effectiveness of the new algorithm on a standard rare event simulation problem (probability of an unlikely transition in a Lennard‐Jones cluster), as well as a high‐frequency data assimilation problem. © 2014 Wiley Periodicals, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.