Abstract
Groundwater table often shows complex nonlinear characteristic. Back Propagation (BP) neural network is increasingly used to predict groundwater table. However man-made selecting the structure of BP neural network has blindness and expends much time, so differential evolution (DE) algorithm was adopted to automatically search BP neural network weight matrix and threshold matrix. In order to improve the convergence of DE algorithm, a chaotic sequence based on logistic map was introduced to self-adaptively adjust mutation factor. Furthermore, a self-adapting crossover probability factor was presented to improve the population's diversity and the ability of escaping from the local optimum. Study case shows that, compared with groundwater level prediction model based on traditional BP neural network, the new prediction model based on DE and BP neural network can greatly improve the convergence speed and prediction precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.