Abstract

With an estimated 440,000 active cases occurring each year, medical device associated infections pose a significant burden on the US healthcare system, costing about $9.8 billion in 2013. Staphylococcus epidermidis is the most common cause of these device-associated infections, which typically involve isolates that are multi-drug resistant and possess multiple virulence factors. S. epidermidis is also frequently a benign contaminant of otherwise sterile blood cultures. Therefore, tests that distinguish pathogenic from non-pathogenic isolates would improve the accuracy of diagnosis and prevent overuse/misuse of antibiotics. Attempts to use multi-locus sequence typing (MLST) with machine learning for this purpose had poor accuracy (~73%). In this study we sought to improve the diagnostic accuracy of predicting pathogenicity by focusing on phenotypic markers (i.e., antibiotic resistance, growth fitness in human plasma, and biofilm forming capacity) and the presence of specific virulence genes (i.e., mecA, ses1, and sdrF). Commensal isolates from healthy individuals (n = 23), blood culture contaminants (n = 21), and pathogenic isolates considered true bacteremia (n = 54) were used. Multiple machine learning approaches were applied to characterize strains as pathogenic vs non-pathogenic. The combination of phenotypic markers and virulence genes improved the diagnostic accuracy to 82.4% (sensitivity: 84.9% and specificity: 80.9%). Oxacillin resistance was the most important variable followed by growth rate in plasma. This work shows promise for the addition of phenotypic testing in clinical diagnostic applications.

Highlights

  • Coagulase-negative staphylococci (CoNS) are the most commonly isolated bacteria in clinical microbiology laboratories [1]; they are not routinely considered pathogenic

  • On a library of isolates defined as either commensal, contaminant, or pathogenic we evaluated the potential for antibiotic susceptibility, biofilm formation capacity, growth fitness in plasma, and some select virulence genes to accurately differentiate these isolates

  • There was a high frequency of antibiotic resistance in the commensal isolates supporting the concept of S. epidermidis being a universal reservoir for antibiotic resistance genes [47]

Read more

Summary

Objectives

Our goal was to address an unmet need for more accurate diagnosis of

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call