Abstract

To establish requirements for normal databases for quantitative rubidium-82 (82Rb) PET MPI analysis with contemporary 3D PET/CT technology and reconstruction methods for maximizing diagnostic accuracy of total perfusion deficit (TPD), a combined metric of defect extent and severity, versus invasive coronary angiography. In total, 1571 patients with 82Rb PET/CT MPI on a 3D scanner and stress static images reconstructed with and without time-of-flight (TOF) modeling were identified. An additional eighty low pre-test probability of disease (PTP) patients reported as normal were used to form separate sex-stratified and sex-independent iterative and TOF normal databases. 3D normal databases were applied to matched patient reconstructions to quantify TPD. Per-patient and per-vessel performance of 3D versus 2D PET normal databases was assessed with receiver operator characteristic curve analysis. Diagnostic accuracy was evaluated at optimal thresholds established from PTP patients. Results were compared against logistic regression modeling of TPD adjusted for clinical variables, and standard clinical interpretation. TPD diagnostic accuracy was significantly higher using 3D PET normal databases (per-patient: 80.1% for 3D databases, versus 74.9% and 77.7% for 2D database applied to iterative and TOF images respectively, p < 0.05). Differences in male and female normal distributions for 3D attenuation-corrected reconstructions were not clinically meaningful; therefore, sex-independent databases were used. Logistic regression modeling including TPD demonstrated improved performance over clinical reads. Normal databases tailored to 3D PET images provide significantly improved diagnostic accuracy for PET MPI evaluation with automated quantitative TPD. Clinical application of these techniques should be considered to support accurate image interpretation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call