Abstract
During the fabrication processes for single-wall carbon nanotube thin-film transistors (SWCNT-TFTs), the impurities of organic residues such as photoresist and developer can be induced, which affects the charge transport. As a result, solution-processed SWCNT-TFTs exhibit poor and non-uniform device performance regardless of the intrinsic electrical characteristics. Here, we demonstrate a patterning technique using a selective surface treatment with solution-processed hydrophobic fluorocarbon copolymer in SWCNT-TFTs. By using the difference of wettability in a selective area, a channel region in SWCNT-TFTs can be patterned without the conventional photolithography and etching process. Furthermore, the optimized surface treatment results in denser random networks of SWCNTs in the channel patterned by such technique, compared to the dropcasted SWCNT. The statistical results of the key device metrics such as mobility and threshold voltage extracted from 30 SWCNT-TFTs conclusively prove the improved device performance of SWCNT-TFTs fabricated by such pattering technique. We believe that this work can provide a promising route to stimulate the process innovation of fabrication for high performance solution-processed electronics based on SWCNT random networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.