Abstract

In this work, we briefly review the development and status of interband cascade lasers (ICLs) as related to long-standing issues due to the InAs/AlSb superlattice cladding. By focusing on a hybrid cladding approach to alleviate these issues, we demonstrate substantially improved device performance of ICLs compared to earlier reported ICLs of a similar design in the 3–4 µm wavelength region. These improvements include a threshold current density for broad-area devices as low as 134 A/cm2 at 300 K and reduced threshold voltage with a peak voltage efficiency of 80%, which is more than 10% higher than that obtained from previously reported ICLs. Moreover, we have demonstrated continuous wave (cw) operation of a broad-area device up to 278 K, the highest cw operating temperature among epi-side up mounted broad-area type-II ICLs, implying improved thermal dissipation with the hybrid cladding approach. Additionally, by conducting a comparative study of ICLs with different GaSb layer thicknesses in the hole injector, we reveal and discuss an interesting correlation between the carrier transport, threshold voltage, and hole-induced absorption loss, which may help to guide device optimization for operation in a targeted temperature range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call