Abstract
The determination of S-wave velocity (Vs) is of significant importance in various engineering disciplines, including mining, civil, and geotechnical engineering. It is beneficial to indirectly determine Vs under both dry and saturated conditions and to understand its relationship with influencing input variables: coring depth (H), durability index (DI), water content (Wa), dry density (ρd), saturated density (ρs), and porosity (n). In this study, we evaluate these relationships using three multiple machine-learning algorithms (MLAs): artificial neural network (ANN), fuzzy inference system (FIS), and gene expression programming (GEP), alongside a linear regression method (LRM) and predict both dry S-wave velocity (Vs-dry) and saturated S-wave velocity (Vs-sat) of rocks. The research involves the analysis of 90 datasets derived from samples of schist, phyllite, and sandstone rocks collected from Azad and Bakhtiari dam sites in Iran. The diversity of these datasets is a key advantage of this study, providing a solid foundation for models training and testing while enhancing the models’ generalizability. Model optimization techniques are employed in the Python, MATLAB, GenXProTools, and SPSS environments to identify the most effective versions of ANN, FIS, GEP, and LRM models, respectively. The prediction performance analysis reveals that all applied models yield acceptable levels of accuracy for predicting Vs-dry and Vs-sat. However, GEP emerges as the best model for predicting both Vs-dry and Vs-sat. The ANN and FIS models also achieve high levels of accuracy, while LRM performs comparatively less well. Additionally, sensitivity analysis conducted using the cosine amplitude method (CAM) highlights the influence of different variables on Vs-dry and Vs-sat. The ρd is found to be the most influential parameter on Vs-dry, whereas DI exhibits the least impact. Conversely, the ρs significantly affects Vs-sat, while Wa shows the lowest impact. The exceptional performance of these proposed MLAs confirms their applicability in real-world rock engineering and geotechnics projects, offering precise determination of Vs. The diversity of studied rock types and datasets, along with the use of cost-effective and easy measurable inputs, the determination of Vs in both dry and saturated status, and the application of robust MLAs for Vs determination are the main novelties of this study. However, further researches involving additional datasets and more rock types are required to validate these findings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.