Abstract

BackgroundRecombinant protein production in Escherichia coli cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity. It was recognised that a method for accurate and rapid quantification of plasmid copy number is necessary for optimization and better understanding of this process. Lately, qPCR is becoming the method of choice for this purpose. In the presented work, an improved qPCR method adopted for PCN determination in various fermentation processes was developed.ResultsTo avoid experimental errors arising from irreproducible DNA isolation, whole cells, treated by heating at 95°C for 10 minutes prior to storage at -20°C, were used as a template source. Relative quantification, taking into account different amplification efficiencies of amplicons for chromosome and plasmid, was used in the PCN calculation. The best reproducibility was achieved when the efficiency estimated for specific amplicon, obtained within one run, was averaged. It was demonstrated that the quantification range of 2 log units (100 to 10000 bacteria per well) enable quantification in each time point during fermentation. The method was applied to study PCN variation in fermentation at 25°C and the correlation between PCN and protein accumulation was established.ConclusionUsing whole cells as a template source and relative quantification considering different PCR amplification efficiencies are significant improvements of the qPCR method for PCN determination. Due to the approaches used, the method is suitable for PCN determination in fermentation processes using various media and conditions.

Highlights

  • Recombinant protein production in Escherichia coli cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity

  • The production of recombinant proteins in Escherichia coli bacteria is affected by the number of plasmids, their structural and segregational stability, which have an essential impact on productivity

  • Influence of different treatments on Cycle threshold (Ct) value is greater for plasmid for chromosome, what is reasonable because number of plasmids per cell is higher than number of chromosomes

Read more

Summary

Introduction

Recombinant protein production in Escherichia coli cells is a complex process, where among other parameters, plasmid copy number, structural and segregational stability of plasmid have an important impact on the success of productivity. The addition of antibiotics into the growth medium is the simplest and most broadly used method to preserve a high number of plasmids in bacterial cells [2]. To ensure a high production of recombinant proteins, it is necessary to maintain an optimal plasmid copy number in bacterial cells. This level must be sufficient for the desired gene dosage effect, yet not so high that it induces a metabolic burden and loss of cell resources [3]. To better understand and to optimize the recombinant protein production process, the accurate and rapid quantification of plasmid copy numbers is essential

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.