Abstract

To evaluate radiologists' ability to detect focal pneumonia by use of standard chest radiographs alone compared with standard plus bone-suppressed chest radiographs. Standard chest radiographs in 36 patients with 46 focal airspace opacities due to pneumonia (10 patients had bilateral opacities) and 20 patients without focal opacities were included in an observer study. A bone suppression image processing system was applied to the 56 radiographs to create corresponding bone suppression images. In the observer study, eight observers, including six attending radiologists and two radiology residents, indicated their confidence level regarding the presence of a focal opacity compatible with pneumonia for each lung, first by use of standard images, then with the addition of bone suppression images. Receiver operating characteristic (ROC) analysis was used to evaluate the observers' performance. The mean value of the area under the ROC curve (AUC) for eight observers was significantly improved from 0.844 with use of standard images alone to 0.880 with standard plus bone suppression images (P < 0.001) based on 46 positive lungs and 66 negative lungs. Use of bone suppression images improved radiologists' performance for detection of focal pneumonia on chest radiographs. Bone suppression image processing can be applied to conventional digital radiography systems. Bone suppression imaging (BSI) produces images that appear similar to dual-energy soft tissue images. BSI improves the conspicuity of focal lung disease by minimizing bone opacity. BSI can improve the accuracy of radiologists in detecting focal pneumonia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call