Abstract

Certain sample preparations for fast atom bombardment (FAB) yield an intense but brief pulse of sample ions at the onset of ionization. A model system is used to study this phenomenon. This system utilizes a conventional source of a constant flux of fast atoms and a probe that permits mechanical movement of the sample stage. This is used to simulate the effect of pulsing the atom beam. Experiments with model samples and selected ion monitoring detection show that, following bombardment initiation, sample ions are preferentially dosorbed with respect to ions from the FAB matrix. Exhibition of preferential sample desorption depends upon the analyte behaving as a surfactant in the selected matrix. When used in conjunction with an array detector that permits data collection in a time-resolved manner, this system allows collection of useful mass spectra with significantly enhanced sensitivity compared to normal bombardment. When applied to the undecapeptide eledoisin (sequence pyro-EPSKDAFIGLM-NH2, MW 1187.6 Da) this novel methodology allows an improvement in detection limit of at least three to four orders of magnitude over that observed when using conventional continuous FAB and a point detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.