Abstract
This paper extends the MOOD method proposed by the authors in [A high-order finite volume method for hyperbolic systems: Multi-Dimensional Optimal Order Detection (MOOD). J Comput Phys 2011;230:4028–50], along two complementary axes: extension to very high-order polynomial reconstruction on non-conformal unstructured meshes and new detection criteria. The former is a natural extension of the previous cited work which confirms the good behavior of the MOOD method. The latter is a necessary brick to overcome limitations of the discrete maximum principle used in the previous work. Numerical results on advection problems and hydrodynamics Euler equations are presented to show that the MOOD method is effectively high-order (up to sixth-order), intrinsically positivity-preserving on hydrodynamics test cases and computationally efficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.