Abstract

An optical fiber Mach–Zehnder interferometer (MZI) based on slow light in polymer-infiltrated PCW (PI-PCW) was proposed to enhance the demodulation sensitivity of fiber Bragg grating (FBG) displacement sensor. By optimizing the structure of PI-PCW, slow light with high group index of 110 was realized, which is advantageous to develop high-sensitive MZI. And thanks to electro-optic effect of the infiltrated polymer, the working wavelength of flat band slow light, as well as the demodulation range of MZI, could be flexibility changed and enlarged by tuning external driving voltage. At last, differential and orthogonal method was used to demodulate the interference spectrum of MZI with high stability and good linearity. The FBG was pasted on an Omega-like beam, thus the displacement variation of the free end of the Omega-like beam could be measured by monitoring the output phase of MZI. Finally, the proposed displacement sensor demonstrated a high sensitivity of 1.035rad/mm with good linearity and wide measurement range of 55.6mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.