Abstract

We show how thermodynamic insight can be used to improve the design of a homogeneous extractive distillation process, and we define an extractive efficiency indicator to compare the optimality of different designs. The case study is related to the separation of the acetone–methanol minimum boiling azeotrope with water. The process flow sheet includes both the extractive distillation column and the entrainer regeneration column. Insight from analysis of the ternary residue curve map and isovolatility curves shows that a lower pressure reduces the minimal amount of entrainer needed and increases the relative volatility of acetone–methanol in the extractive column. A 0.6 atm pressure is selected to enable the use of cheap cooling water in the condenser. We optimize the entrainer flow rate, adjusting both column reflux ratios and feed locations, by minimizing the total energy consumption per product unit. The total annualized cost (TAC) is calculated for all processes. Double-digit savings in energy consumpti...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.