Abstract

The surface acidity of an activated eta-alumina catalyst has been investigated by examining the interaction of pyridine with the catalyst by a combination of gravimetric and volumetric adsorption isotherms, infrared spectroscopy (diffuse reflectance and transmission), inelastic neutron scattering spectroscopy, temperature-programmed desorption spectroscopy, and gravimetric desorption experiments. From previous work, this surface was considered to contain three types of Lewis acid sites of increasing acidity: weak, medium, and strong. However, this multitechnique approach reveals the presence of an additional type of Lewis acid site. Although the traditional pyridine ring modes about 1580 cm(-1) are consistent with previous studies, temperature-programmed infrared spectroscopy of the surface hydroxyl groups and mass-selective temperature-programmed desorption experiments establish that the medium-strength Lewis acid category can be subdivided into two components. In this way, the surface structure of the activated catalyst is redefined as comprising (i) weak, (ii) medium-weak, (iii) medium-strong and (iv) strong Lewis acid sites. The (O-H) stretching mode of surface hydroxyl groups provides information on the local structure of the distinct sites, and schematic descriptions for these sites are proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call